aiaccel.torch.h5py.HDF5Writer#
- class aiaccel.torch.h5py.HDF5Writer[source]#
Abstract base class for writing data to an HDF5 file.
This class provides methods to write data into HDF5 format, supporting both single-process and parallel (MPI-based) writing. Subclasses must implement prepare_globals and prepare_group to define how data is structured.
Typical usage is supposed to be:
class FooHDF5Writer(HDF5Writer): def prepare_globals(self): item_list = list(range(100)) offset = 10 maximum = 50 return item_list, (offset, maximum) def prepare_group(self, item, context): offset, maximum = context group_name = f"{item:04d} return {group_name: {"data": np.full([10, 10], offset + item).clip(maximum)}} writer = FooHDF5Writer() writer.write("test.hdf5", parallel=False)
- __init__()#
Methods
__init__
()Prepare the global data required for writing.
prepare_group
(item, context)Prepare groups of datasets for writing to HDF5.
write
(filename[, parallel])Write data to an HDF5 file, optionally using parallel processing.
Attributes